Europe/Lisbon
Room P3.10, Mathematics Building — Online

Cho Chuhee
Cho Chuhee, Seoul National University, Republic of Korea

Almost everywhere convergence of sequence of Schrödinger means

In this talk, we consider pointwise convergence of the Schrödinger means along sequences $t_n$ that converge to zero. We discuss sufficient conditions for the convergence and explain the key observation, which is that bounds on the maximal function $\sup_{n} |e^{it_n\Delta} f| $ can be deduced from those on $\sup_{0\lt t\le 1} |e^{it\Delta} f|$ when $\{t_n\}$ is contained in the Lorentz space $\ell^{r,\infty}.$ We will discuss sharp counterexamples for the related maximal estimates.