Planned seminars

Europe/Lisbon —

Bruno Premoselli

Bruno Premoselli, Université Libre de Bruxelles

In this talk we consider perturbations of Yamabe-type equations on closed Riemannian manifolds. In dimensions larger than 7 and on locally conformally flat manifolds we construct blowing-up solutions that behave like towers of bubbles concentrating at a critical point of the mass function. Our result does not assume any symmetry on the underlying manifold.

We perform our construction by combining finite-dimensional reduction methods with a linear blow-up analysis in order to sharply control the remainder of the construction in strong spaces. Our approach works both in the positive and sign-changing case. As an application we prove the existence, on a generic bounded open set of $\mathbb{R}^n$, of blowing-up solutions of the Brézis-Nirenberg equation that behave like towers of bubbles of alternating signs.

Europe/Lisbon —

Gabriele Benomio

Gabriele Benomio, Princeton University
To be announced

Europe/Lisbon —

Yukihiko Nakata

Yukihiko Nakata, Aoyama Gakuin University, Tokyo
To be announced

Europe/Lisbon — Online

Grégoire Allaire

Grégoire Allaire, CMAP, École Polytechnique

Additive manufacturing (or 3-d printing) is a new exciting way of building structures without any restriction on their topologies. However, it comes with its own difficulties or new issues. Therefore, it is a source of many interesting new problems for optimization. I shall discuss two of them and propose solutions to these problems, but there is still a lot of room for improvement!

First, additive manufacturing technologies are able to build finely graded microstructures (called lattice materials). Their optimization is therefore an important issue but also an opportunity for the resurrection of the homogenization method ! Indeed, homogenization is the right technique to deal with microstructured materials where anisotropy plays a key role, a feature which is absent from more popular methods, like SIMP. I will describe recent work on the topology optimization of these lattice materials, based on a combination of homogenization theory and geometrical methods for the overall deformation of the lattice grid.

Second, additive manufacturing, especially in its powder bed fusion technique, is a very slow process because a laser beam must travel along a trajectory, which covers the entire structure, to melt the powder. Therefore, the optimization of the laser path is an important issue. Not only do we propose an optimization strategy for the laser path, but we couple it with the usual shape and topology optimization of the structure. Numerical results show that these two optimizations are tightly coupled.

This is a joint work with many colleagues, including two former PhD students, P. Geoffroy-Donders and M. Boissier.

Europe/Lisbon —

Nicola Fusco

Nicola Fusco, Università di Napoli "Federico II"
To be announced

Europe/Lisbon —

Riccardo Scala

Riccardo Scala, Università degli Studi di Siena

We briefly discuss the definition of relaxation of the area functional. The relaxed area functional, denoted by $A$, extends the classical area functional, which, for any "regular" map $v:U\subset \mathbb{R}^n\rightarrow \mathbb{R}^N$ evaluates the $n$-dimensional area of its graph over $U$. The problem of determining the domain and the expression of $A$ is open in codimension greater than 1. Specifically, this relaxed functional turns out to be nonlocal and cannot be expressed by an integral formula. We discuss how it is related to classical and nonclassical versions of the Plateau problem. As a main example, we try to understand what is the relaxed graph of the function $x/|x|$, a question that surprisingly remained open for decades.

Europe/Lisbon — Online

Juan Luis Vázquez

Juan Luis Vázquez, Universidad Autónoma de Madrid
To be announced