Europe/Lisbon —

Luis Vega

Luis Vega, Basque Center for Applied Mathematics.

We will propose the vortex filament equation as a possible toy model for turbulence, in particular because of its striking similarity to the dynamics of non-circular jets. This similarity implies the existence of some type of Talbot effect due to the interaction of non-linear waves that propagate along the filament. Another consequence of this interaction is the existence of a new class of multi-fractal sets that can be seen as a generalization of the graph of Riemann’s non-differentiable function. Theoretical and numerical arguments about the transfer of energy will be also given. This a joint work with V. Banica and F. de la Hoz.

Europe/Lisbon —

Maria Colombo

Maria Colombo, École Polytechnique Fédérale de Lausanne.

Given a vector field in $\mathbb{R}^d$, the classical Cauchy-Lipschitz theorem shows existence and uniqueness of its flow provided the vector field is sufficiently smooth; this, in turn, translates in existence and uniqueness results for the transport equation. In 1989, Di Perna and Lions proved that Sobolev regularity for vector fields, with bounded divergence and a growth assumption, is sufficient to establish existence, uniqueness and stability of a generalized notion of flow, consisting of a suitable selection among the trajectories of the associated ODE. A long-standing open question is whether the uniqueness of the regular Lagrangian flow is a corollaryof the uniqueness of the trajectory of the ODE for a.e. initial datum.In this talk we give an overview of the topic and we provide a negative answer to this question. To show this result we exploit the connection with the transport equation, based on Ambrosio’s superposition principle, and a new ill-posedness result for positive solutions of the continuity equation.

Europe/Lisbon —

Lucio Boccardo

Lucio Boccardo, Università di Roma La Sapienza.
To be announced