Europe/Lisbon
Room P1, Mathematics Building — Online

Rainer Mandel
Rainer Mandel, Karlsruhe Institute of Technology

New dual variational methods for Nonlinear Helmholtz Equations and polychromatic solutions of Nonlinear wave equations

In the first part of my talk, I present the classical dual variational method in the context of Nonlinear Helmholtz equations that describe monochromatic waves in nonlinear materials. Afterwards, I discuss two recent generalizations of the method. The first deals with an extension to Nonlinear Helmholtz equations with sign-changing nonlinearities. For these problems we construct solutions that have infinite Morse-Index in the dual variational formulation. The second generalization concerns dual variational methods for the construction of breathers, i.e., polychromatic, spatially localized and time-periodic solutions of nonlinear wave equations.

The results were obtained in collaboration with D. Scheider and T. Yesil.

Projecto FCT UIDB/04459/2020.